

Precise Point Positioning PPP

Lantmäteriet, SWEPOS Stockholm, ÅF, 21 March 2019

Samieh Alissa samieh.alissa@lm.se

Outlines

- Introduction.
- OSR and SSR approaches.
- **PPP Principle and computations.**
- Advanced PPP techniques.
- PPP Services.

Introduction GNSS error sources

GNSS error sources

How can we handle these errors in our receivers to satisfy our requirements?

Observation Space Representation (OSR) & State Space Representation (SSR)

State Space Model (SSM)

- state parameter of state space model (SSM)
 - satellite clock synchronization error
 - satellite signal delays (phase and code)
 - satellite orbit error (kinematic orbits)
 - ionospheric signal propagation changes (multiple stage model)
 - tropospheric signal delays (multiple stage model)
 - carrier phase ambiguities
 - receiver clock synchronization error
 - receiver signal delays (phase and code)
 - receiver coordinates

SSR Standardization by the RTCM

Since 2007 the SSR working group of the RTCM SC-104 is developing a standard message format for SSR messages.

Parameter Nature	RTCM message	
GPS orbits/clocks	1060	
Glonass orbits/clocks	1066	
Galileo orbits/clocks	1243	
GPS code biases	1059	
Glonass code biases	1065	
Galileo code biases	1242	
GPS phase biases (L1, L2)	1265	
GPS phase biases (L5)	1265	
Ionosphere VTEC	1264	

SWEPOS

Classification of the modern satellite positioning methods

PPP Principle and computations

WHAT IS PPP?

PPP is defined as an advanced high accuracy positioning technique uses the **SSR**, tries to satisfy the needs of the most demanding users, the ones who need centimetre level accuracy.

PPP Performance:

High accuracy:

Global coverage, nearly same performance everywhere

< 10 cm

Absolute positioning, not relative to the position of any reference stations nearby

Source: York University, Canada, 2019 Triple-frequency PPP

Limitations:

The main disadvantage of PPP is the long convergence time.

RT

Analysis of convergence time in PPP?

PPP Computations

Error Class	Error Source	Error Magnitude	Mitigation method	Error Uncertainty
Satellite	Clock Offset	<1ms	Filtering	75 ns (GPS)
Jacemie	clock offset	<thi3< td=""><td>Thuring</td><td>75 p3 (01 5)</td></thi3<>	Thuring	75 p3 (01 5)
Satellite	Instrumental Biases	< 0.5 cycle	Estimation	0.01 cycles
Satellite	Precise Ephemeris	10 cm	Filtering	2.5 cm (GPS)
Propagation	Troposphere (Hydrostatic component)	2.3 m	Modelling	5 mm
Propagation	Troposphere (Wet component)	< 0.3 m	Estimation	100%
Propagation	lonosphere (1 st order)	< 30 m	Linear combinations /Modelling	(0-1)mm/1 m
Propagation	Ionosphere (higher order)	< 2 cm	Modelling	1-2 mm
Site	Solid Earth tide	< 0.4 m	Modelling	1 mm
Displacement				
Site	Ocean Loading	< 15 mm	Modelling	1 mm
Displacement				
Site	Pole Tide (second-order effects)	25 mm	Modelling	3-5 mm
Displacement				
Receiver	Phase Center Offset	5-15 cm	Modelling	-
Receiver	Phase Center Variations	< 3 cm	Modelling	1-2 mm
Receiver	Phase windup	10 cm	Modelling	-
Receiver	Incorrect Ambiguity Fix	multiple of cycle	Estimation	-

PPP Reciever general functional diagram

Output Position is affected by

GNSS Receiver/Antenna - Measurement quality and availability

Service Provider of Correction Products - Quality and delivery

Rover PPP Algorithm - Within GNSS Receiver (real time) or Post-Processed

LANTMÄTERIET

Advanced PPP Techniques

PPP- Ambiguity Resolution (PPP-AR)

- A key element for PPP AR is the estimation of the Fractional Cycle Biases (FCBs) so as to recover the integer feature of ambiguities.
- The third GPS civil signal L5 is available now (Latest Block IIF), which enables more flexible ambiguity resolution strategies. Triple-frequency PPP AR can be achieved faster with longer wavelength.

PPP-AR Convergence analysis

PPP-RTK

ΙΑΝΤΜΆΤΕ

- It is a *combination* of the original PPP and differential positioning techniques.
- PPP-RTK uses 'State Space Representation' of GNSS error sources.
- PPP corrections of satellite orbits and clocks are *independent* of user location and can be applied worldwide.
- The atmospheric corrections computed from a regional network to **accelerate the filter convergence**, over a local area.

The Future? RTK, NRTK, PPP, PPP-AR, PPP-RTK

	Technically better term	What does it mean?	What is transmitted?	Initialisation Time	Acuuracy (Horiz)
RTK	DGNSS	Elimination of most errors	Corrections per satellite and per RS	< 20 s	2 cm
NRTK	OSR	Estimation of most errors and estimation of some errors	Corrections per satellite and per VRS	< 20 s	2 cm
PPP	SSR	estimation of errors	-Orbits -Clocks	> 10 min	A few cm
PPP-AR	SSR	estimation of errors	-Orbits -Clocks -Phase biases	< 10	A few cm
PPP-RTK	SSR	estimation of errors	-Orbits -Clocks -Phase biases -Troposphere Ionopshere	< 1 min	A few cm

Key for faster convergence for PPP:

- an accurate ionospheric model to improve performance, or takes advantage of the existence of multiple frequencies from a satellite to create smart combinations of iono-free and wide-lane observables allowing fast convergence.
- High-accuracy Tropospheric Zenith Wet Delay (ZWD) estimation.
- Fixing the ambiguity resolution.

PPP Services

IGS Real-Time Service

The IGS started an open-access Real Time Service (RTS) in April 2013 (IGS Ultra-rapid orbits IGU)

RTS: contain the satellite orbit and clock corrections, Expressed within the ITRF08 and formatted according to the SSR standard of RTCM (RTCM Version 2.2 (2.2 comming))

3.2 (3.3 comming)).

IGS Multi-GNSS Experiments (**MGEX**) network

The IGS RTS network consists of \approx 220 globally distributed real-time tracking stations maintained by local and regional operators observing 1-second data with latencies of 1-3 seconds.

Sapcorda has indicated that it will provide its own proprietary data format that will be able to deliver the products listed above.

LANTMÄTERIET

S Ŵ Ε Ρ ៍Ο

Commercial PPP Services

Company	Ser	/ices	
OmniSTAR	GPS 10cm H and V Agric GPS, GLONASS OmniS 10cm H and V GPS OmniS 15 CM	L1/L2 TAR HP cultural Machine guidance TAR G2 Trees or buildings areas L1/L2	
Trimble	GPS, GLONASS, Galileo, I CenterP 2 cm H, 5 cm V < 15 GPS, GLONASS, Galileo, B RangeP 30 CM 1-5	BeiDou, QZSS Agriculture Point RTX Min Worldwide Point RTX min Worldwide Dint RTX	
	GPS, GLONASS Starfix.G2+ 3cm H and 6cm V GPS, GLONASS, Galileo and BeiDou Starfix.G4 10cm H and V		
Fugro	Starfix.G2		
	Starfix.XP2		
	Start	fix.HP	
End-to-end solutions into positioning on land the Autonomous X Venpois () Assumed Positioning and land the Autonomous X	And	TERRA	
🤤 septentrio			

Nou

	r				Í E P O S
	Company		Services		
	Nav	Com	Star	Fire	
	C-Nav		C-NavC2		
			C-NavC1		
			Apex 2		
	Veripos TerraStar Novatel		Apex		
			Ultra 2		
			Ultra		
			TerraStar-C		
			TerraStar-D		
			CORRECT (PPP)		
	Hemis	sphere	Atlas		TerraStar X
	Performance		Torra Star I	fo	or autonomous automotiv
				lerrastar-u	
		Horizontal Accuracy	3 40 cm (RMS) 50 cm (95%)	4 cm (RMS) 5 cm (95%)	2.5 cm (RMS) 3 cm (95%)
T	AR	Vertical Accuracy ³	60 cm (RMS)	6.5 cm (RMS)	5 cm (RMS)
		Convergence Time ⁴	< 5 min	30-45 min	< 18 min
		Supported GNSS	GPS/GLO	GPS/GLO	GPS/GLO/GAL/BDS

Trimble® CenterPoint® RTX Correction Service

GÉOFLEX service (PPP-CNES technology)

Spaceopal launches its PPP service NAVCAST

German Aerospace Centre (DLR e.V.)

0*

180°165°W150°W135°W120°W105°W90°W 75°W 60°W 45°W 30°W 15°W

NAVCAST Performance

The PPP engine (dual frequency, ionosphere free observations) estimates the local troposphere delays and fixes the carrier phase integer ambiguities.

ROAG – (Spain)

Galileo High accuracy Service (HAS)

- High accuracy (PPP) corrections provided in the Galileo E6-B signal component:
 - Satellite orbits
 - Satellite clock corrections
 - Code biases for multi-frequency
 - Signal/correction quality information
 - Phase biases
 - Ionosphere in EU
- Corrections will for Galileo (E1, E5a, E5b, E6, E5 TBC) and GPS (L1, L2, others TBC), and in the future potentially for other GNSS.
- Global coverage when fully operational. Partial coverage before.
 EU always included

S Ŵ Ε Ρ ́Θ Motivation Detection Park Assist **Emergency Braking** Surround View Rear Collision Pedestrian Detection Warning Traffic Sign **Collision Avoidance** Recognition lack Assistance/ urround Adaptive Cruise Control View arie Departure Warning **Park Assist** Surround View Cross Traffic Alert Detectio Park Assist Emergency Braking Surround View Rear Collision Pedestrian Detection Traffic Sign **Collision Avoidance** Recognition ark Assistance/ urround Adaptive Cruise Control View ane Departure Warning Park Assist Surround View Cross Traffic Alert

HIGH ACCURACY ROADMAP – UNDER CONSOLIDATION

GALILEO HAS – Status Overview

- The Galileo Programme will include a *free and open HAS* based on the transmission of PPP corrections globally through the E6b signal
- The EC expects it will accelerate its adoption and lead to innovation in new applications such as *autonomous driving and mobile devices*: the first truly global, standalone HA service.
- It is based on open standards (*RTCM CSSR* as basis).
- Global target accuracy < 20 centimeter (Depend also on Receiver type, algorithm and environment).
- Support HAS via *terrestrial network* is also under consideration.

GALILEO HAS – Exp. Performance

PPP Convergence time is still the problem

Questions?

