Spaceborne Signals of Opportunity for Reflectometry and Scatterometry

A Master's Thesis in Space, Earth and Environment Patrik Bennet & Frans-Erik Isaksson

The thesis

- The team
 - RUAG Space supervisor: Jacob Christensen
 - Chalmers examiner: Rüdiger Haas, Department of Space, Earth and Environment
 - Frans-Erik Isaksson, Communication Engineering
 - Patrik Bennet, Communication Engineering
- Report URL: <u>https://hdl.handle.net/20.500.12380/302039</u>

Spaceborne Signals of Opportunity for Reflectometry and Scatterometry

An overview study with experimental results of an implemented passive reflectometry system using Ku-band TV-DBS opportunity signals indicating soil moisture measurement prospects Mater's thesis in Communication Engineering

PATRIK BENNET FRANS-ERIK ISAKSSON

Department of Space, Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2020

Passive reflect- & scatterometry (1/3)

- Principle
 - Observe reflected and/or scattered signals from existing transmitters in orbit to infer surface and/or atmospheric properties
- Some applications
 - Altimetry (phase, delay)
 - Soil moisture (SNR, interference, pol.)
 - Ocean winds (sea surface roughness)
 - Vegetation (SNR, polarisation)
 - Precipitation (volume scattering)
 - Cryosphere snow & ice structure

Together

ahead. RUAG

HAI MERS

Passive reflect- & scatterometry (2/3)

- Main needs
 - Market study (for drones) show that soil moisture mapping is the most attractive remote sensing application (agriculture industry, insurance firms, ^{Galieo} governments)
 - This and other applications also of interest for e.g. scientific, weather prediction and catastrophe warning purposes

Together

ahead. RUAG

Passive reflect- & scatterometry (3/3)

- Active systems
 - **Pros**: Signal design, simple geometry
 - Cons: Frequency allocation, power consuming, large satellites, coverage limited to own Tx beam
- Passive systems
 - Pros: No on-board transmitter, small satellites, constellations, re-use existing signals, simultaneous tracking of multiple transmitters, large coverage & fast revisit times
 - **Cons**: Complex geometry, signals not intended for remote sensing

Together

ahead. RUAG

Spaceborne signals of opportunity

CHAI MERS

• GNSS

- Signal properties well known, almost global coverage.
- Low power, small bandwidth, only L-band.
- Direct broadcast satellites (DBS)
 - Large bandwidth & power, L to Ku bands, almost global coverage.
 - Unknown signal content.

- Mobile communication satellites
 - Future >10000 satellites (e.g. Kuiper, Starlink), very large bandwidth, up to V-band.
 - Unknown signal, bursty transmission.
- (Active remote sensing instruments)
 - Signals well known, expanding on current systems.

Measurement techniques

Current systems & research

- CYGNSS mission (2016)
 - NASA
 - Application: ocean wind speed mapping (hurricane forecasting)
 - Constellation of 8 small satellites in LEO, tropics coverage
- PRETTY mission (2020/21)
 - ESA, TU Graz, RUAG Space
 - Application: Altimetry
 - iGNSS-R
 - LEO 3U CubeSat

- Current research
 - CYGNSS data map flood inundation during the 2017 Atlantic hurricane season (2018)
 - TechDemoSat-1 (2015)
 - Chalmers sea-level GNSS-R (2018)
 - X-band TV signal PARIS sea surface scattering (2014)
 - **& more**...

Experiment definition

Technique

• Interferometric (PARIS)

Application

• Soil moisture mapping (SNR)

Signal source

- Ku-band GEO TV-DBS Astra 4A
- 33 MHz bandwidth, 50 dBW EIRP
- 52 transponders, 40 MHz/channel

Measurement setup

- The World Heritage Grimeton Radio Station antenna tower
- Installation at 120 meters height
- Flat area surrounded by agriculture

Together

ahead. **RUAG**

Pilot study conclusions

Expected system performance

- Geometry, resolution, soil moisture, reflection and scattering effects, DSP and Monte Carlo simulations of measurement accuracy.
- Coherent integration result
 - "Mean SNR" (per uncorrelated measureme of 18.5 dB using 50 ms coherent integration time.
 - Exponentially distributed SNR.
- Overall
 - Direct path SNR: 7 dB
 - Reflected path mean SNR: -44 dB
 - 2 delay lines expected.

Together

ahead. **RUAG**

Sponsorship shoutout

Couldn't do this without you!

WORLD HERITAGE GRIMETON

PROACCESS Quality Solutions at Heights

Experiment Software Design

MATLAB App

-

Expedition collage: Balcony

 Special thanks to Vanessa and Per that allowed us to use their balcony on the day of their wedding!

Grimeton expedition results

Signal scattering measurements

Together ahead. RUAG

CHAI MERS

- Experiment results
 - Strong correlation peak at delay corresponding well to calculated delay.
 - Observed signal at both specular and diffuse points.
 - SNR at about 10-24 dB (theoretically 18.5 dB).
 - SNR changes over time.
 - More measurements would be required to with certainty characterise the scattering. Especially in the backward direction.

Measurement time series

Conclusion of results

- A model of the system performance (the pilot study)
 - Including geometry, resolution, soil moisture, reflection and scattering effects, DSP and Monte Carlo simulations of measurement accuracy.
 - Corresponds well to experimental results of what is seen so far.
- A Ku-band TV-DBS opportunity signal PARIS design
 - Including complete hardware setup, DSP implementation and a system control and measurement automation app.
 - Experimental observations of promising measurement SNR, but slow oscillations present.
- Ku-band DBS opportunity signal agriculture experimental observations
 - Indications on a rough scattering environment being present, while having promising SNR.
 - Extraction of soil moisture observables seem possible, but further measurements and analysis is required to clarify this.

Speculation on future prospects (1/3) Together ahead. RUAG

• Proposed further work

- Develop a dedicated uC/FPGA measurement system with agile antenna platform.
- Perform more point measurements.
- Obtain and analyse longer measurement time series covering events of interest (rain, drought).
- Expand to product cases and other applications.

• Product case 1: ground-based system

- Easy installation on e.g. radio/TV masts, low maintenance, cheap start up.
- Few antenna, technology and power limitations.
- Long integration time, no iso-Doppler lines.
- Continuous but limited (~1-10 km) coverage.

Speculation on future prospects (2/3)

- Product case 2: drone-based system
 - More maintenance, larger start-up cost.
 - Small antennas, lightweight, agile & compact tech., must be power efficient.
 - Large coverage, Doppler lines, ~min-h revisit
 - Models indicate ~6 dB SNR reasonable.

• Product case 3: LEO constellation

- Very expensive start-up (but less than active EO).
- Lightweight, compact, very power efficient & robust.
- Very large coverage, revisit time dependent on constellation.
- Performance heavily dependent on antenna directivity, beamwidth / sweep and required resolution - might be doable, but trade-offs.

AI MERS

Speculation on future prospects (3/3) Together ahead. RUAG

- Space for signal processing tricks?
 - Many channels from same signal source.
 - Coherence bandwidth ~ c/resolution ≤ 50 MHz
 ⇒ Possibly combine parallel TV-channels as simultaneous non-coherent observations!
 - Otherwise, combine coherently ⇒ instant SNR improvement, but no speckle reduction.
 - Heavy on processing, but may exploit aliasing effects to put ease on this (noise-type trade-off?).
- Possible stakeholders
 - Agriculture industry, flooding/drought disaster warning departments, insurances, environmental research (just for soil moisture application).

RUAG Space in the distance

Together ahead. **RUAG**