

LINKSFOUNDATION.COM

000000000

OSNMA decoding on software radio platforms, the experience at LINKS Foundation

Webinar on GNSS – Interference/jamming/spoofing and security

DR. BEATRICE MOTELLA	
PROJECT LEADER, SPACE AND NAVIO	JATION TECHNOLOGIES RESEARCHAREA
11 MAY 2021	
	0 0 0
	· · · · · · · · · · · · · · · · · · ·
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- Introduction
- Methodology and development work
- Software profiling analysis
- Conclusions and recommendations

ON GNSS - INTERFERENCE/JAMMING/SPOOFING AND SECURITY

The context

Introduction

Increase the robustness of GNSS signals is the growing need for many safety- or liability-critical GNSS applications

- Authentication goes in this direction It is the ability of the system to guarantee to users that they are utilizing non-counterfeit signals coming from one of the constellation satellites
- Considered as the contribution of the system to the robustness against spoofing

Tracking of goods

Galileo and GPS civil authentication

GPS and Galileo systems are proposing evolutions of their legacy civil signals to include features of authentication

- Galileo Open Signal Navigation Message Authentication
 - designed for the E1 Galileo band
 - availability of the full service expected soon

GPS Chips-Message Robust Authentication – Chimera

- solution suitable for the GPS L1C signal
- its first experimental version will be broadcast by the Navigation Technology Satellite 3 (NTS-3)

Picture reworked from: Orolia, Skydel, The GNSS Spectrum. September 2019 Available at: <u>https://www.orolia.com/documents/gnss-spectrum</u>

Motivation of the work

- No OSNMA-ready commercial receivers were available on the marketplace, so the only way to test this new service is to go for an ad-hoc, proprietary implementation
- **Goal**: implementation of the OSNMA functionalities in a complete GNSS fully software receiver
 - able to process in real-time the Galileo signal, including the OSNMA bits
 - exploiting the Software-Defined-Radio (SDR), providing the highest level of <u>flexibility</u> to easily add new features or algorithms and <u>speeding up the prototyping process</u>

WEBINAR ON GNSS - INTERFERENCE/JAMMING/SPOOFING AND SECURITY

NGene2 real-time software receiver

- Supports the L1/E1 GPS/EGNOS/Galileo signals elaboration chain
- Supports several L1/E1 USB front-ends
- Two usage modes
 - Real-time from USB front-end
 - Post-processing from file

Two processing modes

- Raw samples processing mode
- Navigation message bits processing mode

Enabled to process the E1 OS I/NAV message OSNMA bits

B. Motella, M. Troglia Gamba, M. Nicola, "A real-time OSNMA-ready software receiver," *Proceedings of the 2020 International Technical Meeting of The Institute of Navigation*, San Diego, California, January 2020, pp. 979-991

M. Troglia Gamba, M. Nicola, B. Motella, "Computational Load Analysis of a Galileo OSNMA-Ready Receiver for ARM-Based Embedded Platforms," Sensors 2021,

21, 467. https://doi.org/10.3390/s21020467

11 MAY 2021 WEBINAR ON GNSS – INTERFERENCE/JAMMING/SPOOFING AND SECURITY

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- OSNMA support included in NGene2 according to the ICD specifications
- Development performed on a standard desktop PC with Ubuntu 18.04 LTS OS using Eclipse IDE and GCC compiler
- OpenSSL 1.1.1 library used for the cryptographic functions
- Five main functionalities developed:
 - **1.** Digital Signature verification
 - 2. TESLA key verification
 - 3. MAC verification
 - 4. MACSEQ verification
 - 5. Public key verification

European Commission, Galileo Navigation Message Authentication Specification for Signal-In-Space Testing - v1.1. grow.ddg3 j.1 (2018) 1670062. October 2018.

11 MAY 2021 WEBINAR ON GNSS – INTERFERENCE/JAMMING/SPOOFING AND SECURITY

Receiver Block Diagram

PASSION FOR INNOVATION

WEBINAR ON GNSS - INTERFERENCE/JAMMING/SPOOFING AND SECURITY

OSNMA functions profiling performed in terms of:

- <u>memory requirements</u>
- <u>functions call rate and execution times</u>

Testbed executed on:

- two standard desktop PCs
- <u>60 h total running time</u>

Profiling tools

- <u>Standard profiling not suitable for an</u> <u>accurate profiling</u>
- <u>Home-made profiling procedure</u> <u>specifically set up</u>

	Parameter	Value							
	NS	36							
	NB_KROOT	7							
	NMACK	2							
	HF	SHA-256							
s	MF	HMAC-SHA-256							
ter	KS	96 bits							
me	MS	10 bits							
ara	MACLT	26							
ă	MO	0 (No offset)							
Σ	ADKD	{0,2,3,4,11,12}							
OSN	NB_PKR	13							
	NPKT	ECDSA P-224							
	DSMs Sequence	{DSM-KROOT, DSM-PKR, DSM-KROOT}							
	D_KROOT	Short Long							
		32m 11s 1d 6h 32m 11s							
l :ters	Number of Galileo Satellites	7							
nera	Galileo PRNs	{5,6,7,14,24,25,26}							
Ge	NavMsg Length	1 h							

Platform	Platform 1	Platform 2					
Deend	Dell Optiplex	Dell Precision					
Боаго	9010 Desktop PC	T1700 Desktop PC					
Писсоссан	Intel [®] Core™ i7-	Intel [®] Xeon [®] E3-					
Processor	3770	1270 v3					
Base frequency	2 40 CH-	2 50 CH-					
of the processor	5.40 GHZ	5.50 GHZ					
Cores	:	8					
Memory	8 GB DDR3	16 GB DDR3					
Operative	Ubuntu 19.04						
System	Obuntu 18.04.3 LTS (64 bit)						

PASSION FOR INNOVATION

Results

• • Software profiling analysis		Inte	el® Core™	i7-3770	Xeon® E3-1270 v3						
	Call	Mean	Standard	Estimation	Mean	Standard	Estimation				
Highest call rate	rate (Hz)	value (µs)	deviation (µs)	accuracy (%)	value (µs)	deviation (µs)	accuracy (%)				
TESLA key verification (13,60	0.71	0.01	1.77	0.61	0.02	2.87				
(one step)											
MAC verification	2,62	10.89	0.20	1.87	7.85	0.21	2.66				
MACSEQ verification	0,27	8.74	0.20	2.26	5.84	0.18	3.11				
Digital Signature	0,03	345.53	4.07	1.18	134.8	1.51	1.12				
verification					2						
Public key verification	0,01	3.50	0.12	3.43	2.76	0.08	3.08				

Lowest call rate Reduced execution times on Xeon®

Additional memory usage negligible w.r.t. the original version of the RX

NGene2 software receiver

•••• Software profiling analysis

0 0 0 0

006 mario@ismb-navcore: ~/Work/NGene2Osnma/NGene2OsnmaWorkspace/NGene2OsnmaProject File Edit View Search Terminal Help ************** Latitude Longitude Altitude [m] Velocity [km/h] GDOP PRN State CN0 [dB-Hz] Doppler [Hz] OSNMA Last bits and Status TESLA key Nav. message 0x0000000000 OSNMA Cross Auth. Validated Nav. Message Running off-line mode from file </home/mario/Datasets/DATI_OSNMA/OS_NMA_AllADKDs_shart/osnma_TV140_5MS_3600s.dat> (JRC front-eed) Receiver status: RUNNING [Fri Nov 27 10:03:04 2020] I : Galileo PRN 5, authenticated by Galileo PRN 6: MAC with ADKD 4 successfully verified **TESLA** key IFO Press 'CTRL-c' to exit DSM **GPS** and Galileo **OSNMA** bits status validation channel status

Recommendations for the RX Implementation Conclusions and recommendations

Perform the parse of DSM section both on system and satellite basis

- The <u>DSM offsetting</u> allows to speed up the reception of DSM joining together OSNMA bits from different satellites → good for first authentication latency reduction
- <u>Cross-check with DSM from single satellites</u> might increase robustness
- Continuously monitor the validity of DSM sections for an early detection of spoofing attacks
- > Perform a consistency check between the received signal time and the RX clock
 - Galileo System Time is used in the TESLA key (and MAC/MACSEQ) verification

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

➤ NGene2 → implementation of a new fully SW OSNMA-ready GNSS receiver

- Profiling analysis OSNMA functions
 - Compatibility between the computational burden requirements posed by a real-time SDR architecture and the computational power available in standard PCs
- > eNGene \rightarrow Real-time ARM-based SW receiver (Linux)
 - Implemented on ODROID-X2, but compatible with more recent ARM-based embedded platforms

November 2020 - April 2021: NGene2 used to support the Joint Research Centre of the EU Commission in the testing phase of the OSNMA Galileo signal

PASSION FOR INNOVATION

Dr. Beatrice Motella

Project Leader, Space and Navigation Technologies research area

- Beatrice.motella@linksfoundation.com
- in linkedin.com/in/beatrice-motella-5a6b9b13b/

FONDAZIONE LINKS Via Pier Carlo Boggio 61 | 10138 Torino P. +39 011 22 76 150 LINKSFOUNDATION.COM

