

Outline

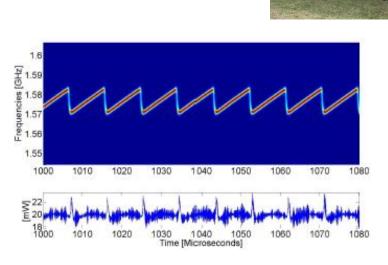
Introduction
Overview of Threats
Potential Attackers
Jamming Countermeasures
Spoofing Countermeasures
Conclusions

GNSS in todays infrastructure

- Several sectors rely on accurate position, velocity and time
 - Mobility
 - Logistics

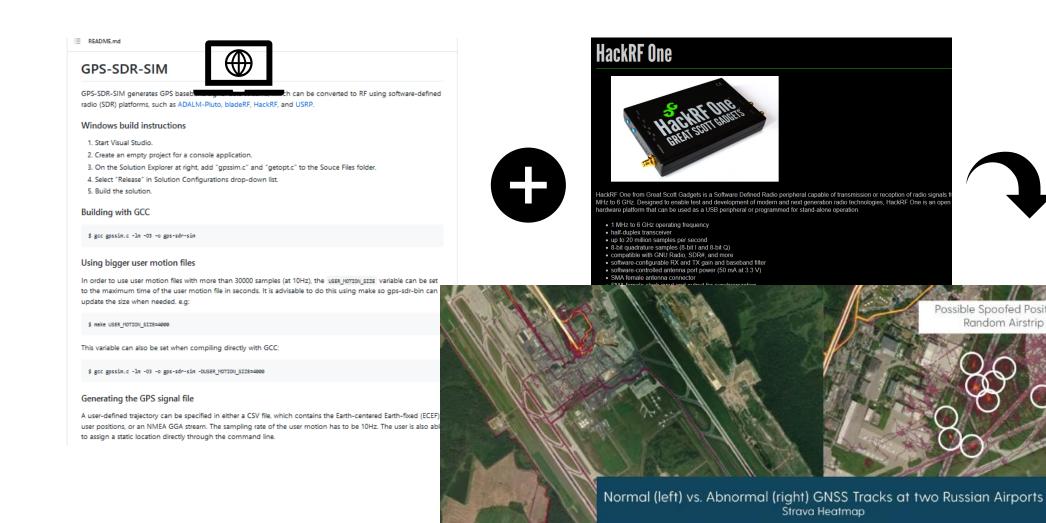
Wireless communications

Data centers



Jamming

- Any signal with 'enough' power
- Common jamming signal types:
 - CW tones
 - pulsed signals
 - chirp
 - broadband



 $[\]begin{tabular}{l} [1] \underline{Signal\ Characteristics\ of\ Civil\ GPS\ Jammers}\ ,\ Proceedings\ of\ ION\ GNSS,\ Portland,\ Oregon,\ 2011\ Barrier \ and\ Arrive \ Arri$

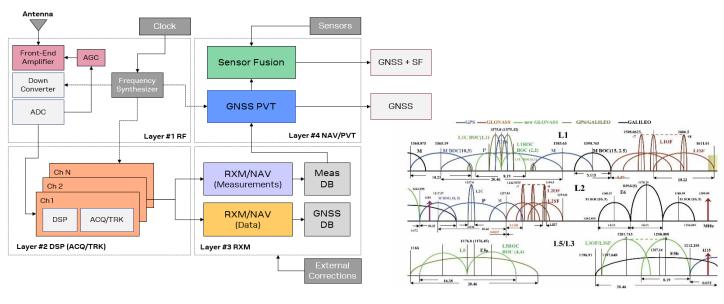
^[2] https://www.jammer-buy.com/gps-jammer/p-6967.html

Spoofing

Possible Spoofed Position Hotspots at Random Airstrip Locations

Spoofing signals

Onset of attack, capture tracking loops:


- signal denial
- overpower
- lift-off (carry-off)

Consistency with live-sky:

- alignment in Power and Time
- Navigation data
- between signals, signals of constellations, signals in different bands

Consistency with models and receiver motion, e.g.:

- noise floor, rate of code phase
- clock characteristics
- position/velocity, ...

- Consistency vs Complexity
- Receiver vs Spoofer capabilities

Threat actors

Туре	Motivation	Capability
Privacy Seekers Script Kiddies	PrivacyBoredom	• Low
្តក្តុ Hacktivists	 Political 	• Medium
Researchers	Improve securitySelf-marketing	• High
Cybercriminals	 Financial 	• High
ກິຕິດ Nation state	 Damage foreign systems 	 Advanced

Impact

Jamming

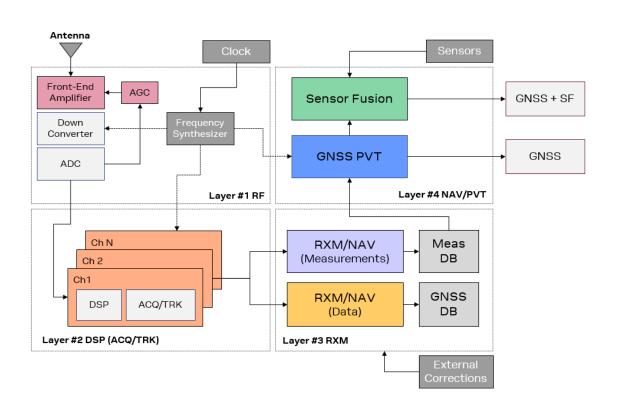
- Unintentional interference
- Intentional jamming
- Spoofing
 - Meaconing (rebroadcasting)
 - Broadcasting fake signals
- GNSS system issues
 - December 2020: Galileo ground system atomic clock failure
 - January 2016: GPS UTC parameter error

- Impact can vary from increased noise to denial of service
- CW jamming ghost satellites
- Impact can vary from nothing to false PVT to no PVT

- Large PVT errors
- > Service not available
- **>** ...

Jamming countermeasures

- Adaptive antenna systems, null steering antennas
- Out-of-band interference:
 - RF front-end filtering
- In-band jamming:
 - Adaptive filtering
 - Static/slow varying CW and narrowband jammers
 - Adaptive notch filters against fast chirp jammers
 - Multi-band receiver may switch to un-jammed band
- Monitor AGC, power levels, signal spectrum
- Recover after attack


Antenna

RF

Signal processing

Broadcast data message

Navigation processing

GNSS receiver processing chain

Antenna

RF

Signal processing

Broadcast data message

Navigation processing

Host system

Antenna arrays for angle-of-arrival detection

3NSS receiver processing chain Antenna RF Signal processing **Broadcast data** message **Navigation** processing Host system

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands

3NSS receiver processing chain

Antenna

RF

Signal processing

Broadcast data message

Navigation processing

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands
- Signal quality and consistency monitoring
 - Between GNSS systems and frequency bands

3NSS receiver processing chain

Antenna

RF

Signal processing

Broadcast data message

Navigation processing

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands
- Signal quality and consistency monitoring
 - Between GNSS systems and frequency bands
- Navigation data validity checks (eg DHS whitelist)
- Navigation data authentication (Galileo OS-NMA)

3NSS receiver processing chair

Antenna

RF

Signal processing

Broadcast data message

Navigation processing

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands
- Signal quality and consistency monitoring
 - Between GNSS systems and frequency bands
- Navigation data validity checks (eg DHS whitelist)
- Navigation data authentication (Galileo OS-NMA)
- Consistency of PVT solution
 - vs known boundaries and motion
 - vs clock characteristics

Antenna

RF

Signal processing

Broadcast data message

Navigation processing

- Antenna arrays for angle-of-arrival detection
- Power level and spectrum checks
 - Changes over time, between GNSS and frequency bands
- Signal quality and consistency monitoring
 - Between GNSS systems and frequency bands
- Navigation data validity checks (eg DHS whitelist)
- Navigation data authentication (Galileo OS-NMA)
- Consistency of PVT solution
 - vs known boundaries and motion
 - vs clock characteristics
- Redundancy at host system
 - sensor data
 - time information

Conclusion

- GNSS is an excellent source of position, velocity and time, well worth protecting
 - Affordability free service, easy installation
 - Accuracy "atomic clock"-level without atomic clocks
 - Availability global coverage
- Effective countermeasures cover all stages from antenna to application
- Redundancy is key multi-GNSS, multi-band
- Threats exist, but also countermeasures evolve

It is an arms race - we are on top of developments

Thank you for your attention