

Monitoring Galileo (GNSS) – Key Performance Indicators

Jan Johansson

jan.johansson@chalmers.se

031 - 772 5558 or 0705 - 176722

Chalmers University of Technology, 2021

Onsala Space Observatory

=> Co-location sites allow to integrate different geodetic techniques

SERVICE SPECIFIC KPI

Example of projects monitoring Galileo KPIs

CHALMERS UNIVERSITY OF TECHNOLOGY

Dedicated to innovation in aerospace

AST(RON

Netherlands Institute for Radio Astronomy

The **Signal In Space Error** (*SISE*) is the satellite-to-user **range error due to satellite signal generation and navigation message** clock and ephemeris error, which is a function of time and user location within the satellite coverage area.

The User Equipment Error (UEE) is the satellite-to-user range error due to all residual error contribution in the range domain that are not under the direct control of the GNSS system.

The User Equivalent Range Error (UERE) is the total satellite-to user range error, the combination of SISE and UEE.

$$UERE = \sqrt{SISE^2 + UEE^2}$$

(from Open Service Service Definition Document)

GPS ERROR BUDGET AND DILUTION OF PRECISION (DOP)

Segment Source	Error Source	GPS 10 Error (m)		^م ر	= DOP	· o _{&}
Space	Satellite clock stability	3.0		Positioning	Geometry	y Measurement
	Satellite perturbations	1.0		accuracy	(Dilution Precision	of accuracy .)
	Selective availability	32.3	0.0	۵		
	Other (solar radiation pressure)	0.5		M A	d-	۶×
Control	Ephemeris prediction error	4.2			FN -	Ň,
	Other	0.9		R 1/V		R
User	Ionosphere delay	5.0		$\langle W \rangle$	۵.	× n
	Troposphere delay	1.5		¥		
	Receiver noise and resolution	1.5			,	h
	Multipath	2.5		POOR GDOP satellites bunche	d	GOOD GDOP (ideal case)
	Other (internal biases etc)	0.5		together	:	one satellite overhead 3 on horizon,
System User Equivalent. Range Error	Total root sum square		8.0		1	120° apart in azimuth

SWEPOS stations used for KPI calculation

ŧ	Station ID	Station name	lat	lon	since	until
L	ARJ6	Arjeplog	66.3180	18.1250	1/7/2018	present
2	HAS6	Hassleholm	56.0921	13.7180	1/7/2018	present
3	JON6	Jonkoping	57.7454	14.0597	1/7/2018	present
1	KAD6	Karlstad	59.4440	13.5056	1/7/2018	present
5	KIR8	Kiruna	67.8775	21.0602	1/7/2018	present
5	LEK6	Leksand	60.7221	14.8771	1/7/2018	present
7	LOV6	Lovo	59.3378	17.8289	1/7/2018	present
3	MAR7	Gavle	60.5950	17.2584	1/7/2018	present
)	NOR7	Norrkoping	58.5901	16.2464	1/7/2018	present
LO	ONS1	Onsala	57.3953	11.9245	1/7/2018	present
1	OSK6	Oskarshamn	57.0656	15.9969	1/7/2018	present
12	OST6	Ostersund	63.4427	14.8580	1/7/2018	present
13	OVE6	Overkalix	66.3178	22.7734	1/7/2018	present
L4	SKE8	Skellefteaa	64.8792	21.0481	1/7/2018	present
L5	SUN6	Sundsvall	62.2324	17.6598	1/7/2018	present
l6	SVE6	Sveg	62.0173	14.7001	1/7/2018	present
L7	UME6	Umea	63.5781	19.5095	1/7/2018	present
18	VAE6	Vanersborg	58.6931	12.0351	1/7/2018	present
19	VIL6	Vilhelmina	64.6978	16.5599	1/7/2018	present
20	VIS6	Visby	57.6539	18.3673	1/7/2018	present

GNSS navigational frequency bands

RNSS : Radio Navigation Satellite Service

https://gssc.esa.int/navipedia/index.php/GNSS_signal

GNSS - All Signals

https://gssc.esa.int/navipedia/index.php/GNSS_signal

Example of Navigation KPI: Ranging Accuracy

(from Open Service Service Definition Document)

Signal In Space Error (SISE)=

Broadcast Orbit & Clock – Reference Orbit & Clock

Predicted

A posteriori

Ranging Error= Projection of the SISE in the Sat-User direction

Ranging Accuracy KPI:

 95% percentile of the Global Average Ranging Error (above 5 deg Elevation coverage)

Page 10

Radial and Transversal Errors

SISE Global Average for each Satellite

GPS – Signal in Space Error

User Equipment Errors - Atmosphere

- Residual Ionosphere error due the imperfection of the ionosphere model as provided in the navigation message, used to correct for the ionospheric delays (only for single-frequency users)
- Residual Troposphere error due to the imperfection of the model used to estimate the tropospheric delays. Models like Saastamoinen combined with the International Telecommunication Union (ITU)-R P.835-3, -4 will easily fulfill the assumptions reflected in the table.

Reference: Springer Handbook of Global Navigation Satellite Systems Peter Teunissen, Oliver Montenbruck

Co-located instruments at Onsala

Microwave radiometer: WVR "Konrad" Geodetic VLBI: ONSALA60, ONSA13NE, ONSA13SW

Zenith Trop. Delay – Estimated using GipsyX

User Equipment Errors – Receiver & Local Effects

- Errors in the user receiver equipment due to local effects on code error, such as thermal noise, radio frequency interference and multipath
- Multipath Bias Error
- The time variation of the ionosphere introduces a bias in the single frequency smoothed code (Carrier-smoothing), due to the code-carrier divergence (Ref: ESA Navipedia)

$$\widehat{R}_1 = r + I_1 + bias_I + \nu_1 \qquad (6)$$

UERE Calculations – E1 and E1/E5a

ERROR SOURCE	[METERS]		
Signal In Space Ranging Error (SISE)	0.67		
Residual Ionosphere error	6 (5°) -3 (90°)		
Residual Troposphere error	1.35 (5°) – 0.14 (90°)		
Thermal noise, Interfer, Multipath	0.35 (5°) - 0.23 (90°)		
Multipath bias error	0.59		
Satellite BGD error	0.30		
Code-Carrier Ionospheric divergence error	0.30		
Total (1-sigma error [cm])	6.26 (5°) - 3.10 (90°)		

Table 23. Single Frequency E1 – Rural Pedestrian (RP) User Environment (*)

ERROR SOURCE	[METERS]		
Signal In Space Ranging Error (SISE)	0.67		
Residual Ionosphere error	0.08 (5°) - 0.03 (90°)		
Residual Troposphere error	1.35 (5°) – 0.14 (90°)		
Thermal noise, Interfer, Multipath	0.46 (5°) - 0.13 (90°)		
Multipath bias error	0.19		
Satellite BGD error	0.0		
Code-Carrier Ionospheric divergence error	0.0		
Total (1-sigma error [cm])	1.59 (5°) – 0.72 (90°)		

Table 24. Dual Frequency E1-E5a - Rural Vehicle (RP) User Environment (*)

Calculating Δ GAUT and Δ GGTO

GAUT_{computed} = [UTC – GST]_{computed} = [UTC-OSO(REF)] + [OSO(REF)-GST]

UTC - OSO(REF) = [UTC - UTC(SP)] - [UTC(SP) - OSO(REF)]

dGAUT = GAUTcomputed - GAUTBRDC

GGTOcomputed = [GST - GPST]computed = [OSO(REF) - GPST] - [OSO(REF) - GST]

dGGTO = GGTOcomputed - GGTO_{BRDC}

OSO(REF) is an hydrogen maser

UTC – UTC(SP), where UTC(SP) is the Swedish national time scale, is extracted monthly from the BIPM Circular T

UTC(SP) – OSO(REF) is data from a GNSS time link with calibrated receivers connected to respective reference

GAUTBRDC is extracted from Galileo NAV files from **ONSA**

[OSO(REF) – GPST] and [OSO(REF) – GST] is code data from the calibrated GNSS receiver ONSA

GGTO_{BRDC} is extracted from Galileo NAV files (GPGA) from **ONSA**

User Equipment Errors?

User Equipment Errors – Satellite Delay

- Similar to other GNSSs, the Galileo clock corrections are generated for dual-frequency users, and single-frequency users will need to use the Satellite Broadcast Group Delay BGD(f1, f2)
- Satellite Broadcast Group Delay (BGD) error is due to the imperfection of the correction for transmitter delay differences between carriers.
- Only relevant for single-frequency users with correction based on BGD(f₁, f₂) = (TR1-TR2)/(1- (f₁/f₂)²) ≈ 30 cm